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Abstract--Consideration is given to curved wall jets {ie. flow along a wall which is curved in the
streamwise direction) and, in particular, to flow along either a convex or a concave circular surface. The
laminar flow and heat-transfer characteristics are investigated by making use of the method of inner
and outer expansions. The Navier-Stokes and energy equations are expanded in series, with 1/\/Re as
the expansion parameter. The first-order equations are identical to the conventional boundary-layer
equations, whereas the second-order squations are corrections for curvature and displacement effects.
The latter equations were solved by a difference-differential method, with Pr=1072 for the energy
equation. The second-order correction increases the wall shear, the extent of the increase being greater
for flow over a concave surface than for flow over a convex surface. On the other hand, the second-order
correction either increases or decreases the Nusselt number, depending on whether the surface is convex
or concave. The Coanda effect, whereby an induced transverse pressure difference inhibits flow separation,
was demongirated by the analysis.

NOMENCLATURE

Cy,  local friction factor;

e;, temperature variable, 0%t,;

fi,  reduced stream function, equation (19);

h, local heat-transfer coefficient;

k, thermal conductivity;

N, stretched dimensionless normal coordinate,
n \/ Re;

Nu, local Nusselt number h#/k;

i, §  curvilinear coordindtes;

n, s, dimensionless curvilinear coordinates,
A/F, §/F;

P, dimensionless pressure for outer expansion;

Pr,  Prandti number;

B, pressure;

P, dimensionless pressure for inner expansion,
({_} - ﬁm)f 14 iﬁ N

Re, Reynolds number, 7ii,/v;

Py radius of circle;

r dimensionless polar coordinate;

T, dimensionless temperature for outer
expansion;

i, temperature;

5, dimensionless temperature for inner
expansion, F—E o —~Fwhi

U, V, dimensionless velocity components for outer
expansion;

i, 5, velocity components;

u,v, dimensionless velocity components for inner
expansion, /i, 5/, ;

i,  reference velocity.

Greek symbols

o, thermal diffusivity;

n, similarity variable, equation {17);

8, angular position coordinate;

i, curvature;
K, dimensionless curvature, Fi;

v, kinematic viscosity;

[N density;

€, wall shear stress;

¥,  dimensionless stream function for outer
expansion;

¥, dimensionless stream function for inner
expansion.

Subscripts

i, first-order functions;
2, second-order functions;

oo,  ambient;
w, wall.
Superscript

derivative with respect to n.

INTRODUCTION

A WALL jet is 4 fluid stream which is bounded on one
side by a solid wall and on the other side by an other-
wise quiescent fluid environment with which it can
freely mix. One of the situations where a wall jet is
encountered is on a surface on which 2 free jet has
impinged. The wall jet is created by the impinging fluid
which, after turning, flows along the surface. A wall jet
may also be created by fluid directed tangentially along
a surface by an injection slot. Among heat-transfer
applications, wall jets are encountered in the drying of
textiles and paper, tempering of glass, cooling of turbine
bilades, etc.

A two-dimensional wall jet flow on a flat surface
may be termed a plane wall jet, whereas the designation
curved wall jet may be employed to describe a two-
dimensional wall jet flowing along a bounding wall
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which is curved in the streamwise direction. In addition
to heat-transfer applications, the curved wall jet is also
of interest in aeronautical applications such as
boundary-layer control and circulation control of
airfoils. The present paper is concerned with laminar
flow and heat transfer in curved wall jets along convex
and concave circular surfaces.

The first analysis of a laminar wall jet flow was
performed by Glauert [1], who treated the plane case
using a conventional boundary-layer model (ie. dis-
placement effects due to the boundary layer were not
included). A similarity solution was obtained in which
a key parameter is the flux of external momentum.
Although this quantity is an invariant for the Glauert
problem, its numerical value cannot be determined
from the similarity solution itself and, therefore, the
solution is incomplete. This indeterminacy arises from
the suppression of the boundary condition at the origin
of the wall jet. A correction of Glauert’s solution to
account for the boundary-layer displacement effect was
obtained by Plotkin [2].

There has been some study of the fluid flow aspects
of curved laminar wall jets, but not of the heat transfer.
Wygnanski and Champagne [3] simplified the Navier-
Stokes equations by assuming that the boundary-layer
thickness is small compared with the radius of curva-
ture of the surface and that the variation of the latter
along the surface is of order unity. They found a
similarity solution for the special case in which the
radius of curvature is proportional to the 3 power of
the arc length. The same similarity solution was in-
dependently obtained by Lindow and Greber [4].

More recently, Plotkin [ 5] solved the curved wall jet
problem for flow along a specific parabolic surface
using a truncated series in which the first term is
Glauert’s solution and the second term is a correction
for curvature and for displacement effects. The solution
contains an unknown characteristic velocity which was
evaluated in terms of Glauert’s flux of external
momentum. Unfortunately, the latter quantity is not an
invariant throughout the flow field for Plotkin’s
problem, so that its use in evaluating a constant
reference velocity leads to an inconsistency. Clark and
Watson [6] also used a truncated series to study the
curved wall jet and applied their analytical method to
flow along a parabolic surface. Their characteristic
velocity was evaluated in the same way as was Plotkin’s
with the same inconsistency caused by the variability
of the flux of external momentum.

The objective of the present study is to solve the flow
and energy equations in order to obtain skin friction
and heat-transfer characteristics of laminar wall jets
flowing along convex and concave circular surfaces.
The analysis is performed using Van Dyke’s technique
of inner and outer expansions [7]. The first-order
solutionis Glauert’s similarity solution, and the second-
order solution provides a correction for surface curva-
ture and boundary-layer displacement. The partial
differential equations for the second-order functions are
solved by a difference-differential method. The heat-
transfer solutions are for a Prandtl number of 0-72
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(gases). To complete the solution, it is necessary to fix
both the characteristic velocity and the effective origin
of the wall jet.* A method is described whereby both
quantities are determined with the aid of experimental
information.

GOVERNING EQUATIONS

A schematic diagram showing coordinates and
nomenclature for wall jet flow along a convex circular
surface i1s presented in Fig. 1. The curvilinear co-

n
s

~ o
~

~
D <7\
fw

u

F1G. 1. Flow configuration and
coordinate system.

ordinates (5,7) have their origin at 0; § is the arc
length along the surface (i.e. § = #0) and 7 is the local
outward normal. Consideration is given here to the
symmetry case where the flow field is identical at all
pairs of streamwise stations s and —s. The flow
direction is indicated in the diagram. For the case of
flow on the concave (i.e. inner) surface of the circle, the
directions of 7 and  are reversed relative to those of
Fig. L.

For constant property laminar flows, the equations
of mass, momentum, and energy conservation may be
written in terms of curvilinear coordinates as [8]

éu 0
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* The need to fix the effective origin is common to all of
the analyses cited in the foregoing, but the issue appears not
to have been addressed therein.
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in the foregoing, the overbar identifies a dimensional
quantity. The curvature & is the reciprocal of the radias
of the circle in the present problem.

To construct dimensionless quantities, the radius of
the circle 7 s used as a length scale, and an as-vet
unspecified reference velocity &, is used as the velocity
seale. Then, the dependent variables are

IEZ/En ﬁf/ar! (f”’"iw)/(iao—"fw)v (ﬁ"'f’m)/par%
and (5)

S=§F=8, n=§F, x==%F Re=¥jv

where x takes on values of L1 respectively for the
convex and concave surfaces.

It is well known that the dimensionless thickness of
the boundary layer is of order 1/,/Re. Accordingly, a
new boundary-layer normal coordinate which is of
order unity may be defined as N = »./Re. The trans-
verse velocity within the boundary layer & also small
and should be magnified in a similar manner. Once
these scalings have been made, the conventional
boundary-layer equations are obtained by letting Re
become infinite with N fixed. However, when Re is only
moderately large, as in the case in a laminar wall jet
and, in addition, if the surface curvature is sufficiently
large so that the boundary-layer thickness becomes
comparable to the radius of curvature, the conw
ventional boundary-layer equations are inadequate to
describe the flow.

Van Dvke’s method of inner and outer expansions
[7] is used here to derive governing equations which
are subsequently solved to obtain a better represen-
tation of the flow and heat transfer. The basis of the
method is to expand both the inner (boundary layer)
flow and the outer (inviscid) flow in series, with
boundary conditions for the functions in the expansions
being provided by a matching of the two flows.

Although the flow outside the boundary layer It
invigcid, it is affected by the presence of the boundary
layer. The first-order correction of the outer flow
owing to this effect is of order 1/,/Re. Consequently,
the outer expansions {ie. for the inviscid flow} are
expressible in dimensionless form as

U=U+Uy//Re+...,
V= Vi+Vo/\/Re+ ...,
P=Pi+Py/JRe+..., (6}
T=Ti+TA/Re+ ..
W oo ‘?; ‘i"‘?g;xjﬂé%‘«u.

For the present problem, all of the funictions in equation
(6) with subscript one are zero, except Ty which is unity.
The stream function W, obeys Laplace’s equation, and
U, and ¥, are obtained from ¥, by differentiation.
P, and T; are found to be zero in the present problem.
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The velocity components, the pressure, and the tem-
perature for the boundayy-layer flow are also expanded
in series

== ﬁ;‘i‘ﬁgeiije"P
3 “‘Li Re«i—t?zfﬂe—%'

p-~91+pgf\fﬁﬁ—§-.‘
t=1+t/\/Re+ ...

&

Tt may be noted that the form of the expansion for v
was chosen so that vy ~ 8y, 1y ~ Hs.

Substitution of equations {7} into the dimensionless
counterparts of {1}-{4) and collection of terms with
similar powers of Re leads to the governing equations
for the successive inner approximations. The first-ordet
equations are, with N = n./Re,

duy  duyg
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The second-order equations are given by
1y
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The boundary conditions at the wall for the outer
gxpansions and at the edge of the boundary layer for
the inner expansions are found by matching the ianer
and outer solutions,

SOLUTIONS OF THE MOMENTUM EQUATIONS

First-order inner solution

The governing equations for the frst-order inner
solution are expressed by {8{10)} The asymptotic
boundary conditions at the edge of the boundary layer,
which result from the inner-outer matching, are that
Hy U1(0, 0) and n— P,(G, 0). Since both U1 and Pi
are zero, it follows that 4, —0 as N — o0 and that

= { everywhere in accordance with eguation {10



1354

Then, the complete statement of the boundary con-
ditions for equations (8) and (9) is
y=vy=0at N=0; u; -0 as N—-oc. (16)

Equations (8) and (9) with the boundary conditions
{16} were solved by Glauert [1] using a similarity
transformation. By the introduction of a similarity
variable

n=@E0"IN
the momentum equation reduces to
VAR AN =0
i) = fi® =0, and fi(n)~0as n~>oo (I8
where f; is defined by
¥1(6, Ny = 8311 (n). (19)

The solution to equation (18} is obtained in closed
form as

_ L (L4t o [ GAP
e G o

(7

From this, the friction factor associated with the first-
order flow is

Cpr = tin/hpit}) = 0731(0)/(8 /Re),
where f{(0) = 3.

n

Second-order outer solution

As already noted, P, =0 and ¥, is governed by
Laplace’s equation. The boundary condition for P, at
the wall follows from the inner-outer matching as [7]

9

¥,(8,0) = AE!_{?O <g£r; -N _....,) = g, {22)

N
Thus, as far as W, is concerned, the first-order
boundary-layer solution provides, via equation (22), a
source of mass distributed along the surface. Since
congideration is being given here to a symmetric flow,
the boundary condition (22} is appropriately rewritten

as
(8, 0) = sgn(6)|01*. (@3

If consideration is first given to the concave case, the
task is to solve

2¥, 10%, 1 0%
S el Nl S 1, (4
ot r ar P aet 0 for r< 24
¥, = sgn(®|0* at r=1, (25)

The solution is given by Poisson’s integral formula

B sgn{g)g1*
W, (0, r) = . J.w 1472 —2rcos{@—¢)

do, (26)

or, transforming from r to n with r = (1—n),
"PZ (9) n)

=g sgn(¢)| ¢t
R P 1+ (1 =nP—2(1 —n)cos{f—¢}

@n
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The velocity U, at the wall, which is needed as a
boundary condition for the forthcoming second-order
inner solution, is calculated from

o¥,

U(6,0) = lim 2.

a3 R

(28)

¥, has a singular point at 1 = 0 and ¢ = 8, so that
equation (27) has to be modified to facilitate the
numerical evaluation of equation (28). If the stream
function on the surface were constant and equal to
unity, the solution would then be W, =1, that is,
equation (27} would become

_ 1~(1—n)*

! 2n

ki H
dg. (2
XL TF (0= —20—meos@—g ¢ @
Multiplying both sides of equation (29) by ¥,(8,0) =
sgn{6)161* and subtracting it from equation (27), one
obtains

¥, (6, n)— ¥, (6, 0) (30)
CI-{1=w? " sgn(@)|@|t —sgn(B)|6]F db
T e V{1 —mP =2(1—mjcos(B—¢)

Then, U,(8, 0) is given by
‘*’2 (01 n) - \PZ (87 0)
n

_ 1 [" sgn(@)lg|*—sgni@)jof*
Tl 1—coslf—@)

U, (8,0} = liné

dé. (31)

For flow along a convex surface, ¥, can be solved
for by an inversion which transforms the outside of the
circle into the inside. From these operations, it is found
that U,(6, 0} is expressed by exactly the same equation
as (31).

Since ¢ = @ is a singular point, the interval of in-
tegration should be divided into three regions, ie.
—nto(f—¢), (8—&) to (F+¢), and (F+¢) to =, and the
numerical integration should be performed separately
in each region. It is easy fo show that the second
integral approaches zero as ¢ tends to zero.

Second-order inner solution

Since p; = 0, all the terms in equations (13} and (14)
which contain p, vanish. The pressure p, is found from
equation {14} with the boundary condition p, — P, = 0
as N — 0.

© i
prm =k [ kAN = LD 0
In particular, the pressure at the wall is
1 i
P20, 0)= — kIO = — k7 (33)

To initiate the solution of the momentum equation
(13), a stream function ¥, is introduced to satisfy
equation (12).

3+ &ENpp = — %%% . {34)

- 2
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oY,
-3 772
or U = 49 611
0y, i,
_ r2 = 35
vy = Kkn(f1—=3nf]) 66+4 "an’ (35)

where the last term in the v, equation of (35) results
from the change of variable from N to #. Substitution
of equations (32) and (35) into (13) yields

5 Wz i l//z 5!//2 o, 2
s 40 ' "
I G i G0 fi g i
= —dxbnf{”, (36)
which is subject to the boundary conditions
Y2=0y,/0n=0 at n=0, (37)

B2/0n — 40%U,4(6,0) as 15— oo.

The last boundary condition in (37) results from the
matching condition u, — U,(6,0) as N — 0.
At 6 = 0, equations (36) and (37) reduce to

@1 6’% A 6t//z 0
4/2:%:0 at n=0, (38)
an
‘/’2 = lim 463U(6,0) = —(,/2+1) as > oo

Inasmuch as there are no 0 derivatives in the differential
equation for y,, it can be treated as an ordinary
differential equation. The needed input information for
/1 and its derivatives is available in implicit form [see
equation (20)], but this is inconvenient for an accurate
solution of equation (38). Instead, equations (18) and
(38) were solved simultaneously by the Runge—Kutta
method to an accuracy of eight significant figures.

The solution of equation (36) for 6 > 0 was carried
out by a difference—differential method. At the first
step, the @ derivatives were approximated by a one-
sided forward difference, whereas for subsequent steps
a three-point difference was employed. The step size
Af was n/40. The quasi-ordinary differential equation
which resulted at each step was solved by the Runge—
Kutta method. The input values of f; and its derivatives
needed for the solutions were.read from the computer
memory where they had been placed subsequent to
solution of equation (18). The step size Ay and maxi-
mum 7 were 0-05 and 25, respectively. Verification
runs in which Ay and #,,, were varied indicated five
significant figure accuracies for the friction factor.

The friction factor associated with the second-order
flow is given by

1 0?
Cpa =12 / (5 paf) = ( 6:2) _07ERe. (39

The total friction factor is, therefore,

Cf = Cfl +Cf2

=6 */(36\/Re)+< RZ

) 0~ %/(8Re),
’T n=0

(40)

d
or CrlCri=143 ( a’;//2>"=09‘*/\/Re. 41
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SOLUTIONS OF THE ENERGY EQUATIONS

First-order inner solution

The energy equation (11) for the first-order inner
solution can be transformed into an ordinary differ-
ential equation by the use of the similarity variable .

t{+Prfit' = 0. (42)

The matching of inner and outer solutions requires
that t; - T1(, 0) as n — oo, and since T; = 1 it follows
thatt, — 1. The boundary conditions can then be stated
as

L =0atn=0; t;,—>1 as n—>oo0. (43)
The solution of equations (42)—-(43) can be written in a
closed-form expression involving a double integral
which must be evaluated numerically. It was found that
greater accuracy could be attained by a direct numerical
solution of equation (42) using the Runge-Kutta
method. Once the solution has been performed, the
Nusselt number for the first-order solution can be

evaluated from
Nu, = hyi/k = (50~ *(Re) t{(0).

The quantity t1(0) is a function of Prandtl number and
is equal to 0-28623 for Pr = 0-72.

(44)

Second-order inner solution

The energy equation for the second-order inner
solution is expressed by equation (15) which, after
transformation into (@, n) coordinates, becomes

1 62r2 a:z
Pron® f1 49f1

1
- —49*{ (F-nh)+2ha. w9

Inasmuch as the outer solution yields T, =0, the
boundary conditions for ¢, are

t2=0atr]=0, tz-’O&S?’—)w (46)

Next, a change of variable e, = 6*t, was introduced
with the expectation that the derivative €5(0) would
have a “nicer” 6 dependence than the derivative t5(0).
These quantities enter into the evaluation of the Nusselt
number. From an examination of equation (45) in the
neighborhood of the wall, it can be conjectured that
#%t, ~ 8,50 that ¢5(0) should be nearly linear in 6. After
transformation, equation (45) becomes

1662

e

=—49{( nfl) Wz}rl, @)

with boundary conditions for e, that are identical to
those for t, [equation (46)].

Equation (47) was solved by the same difference-
differential method that was employed to solve equation
(36). The calculations were performed for a Prandtl
number of 0-72. At 8 = 0, it can be shown that e, = 0.

+f1ez
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The Nusselt number can then be evaluated as

Nuy = hyFlk = (0™ (Dea/on)y =0 - (48)

Then, by making use of equations (44) and (48), there
follows
Nu= Nﬂl -+ Nﬁz
= (P07} (Re)*t1(0) + 30" (Pe2/Bn)y=0 (49)

or

Nu/Nu; = 1+ {(%) /tﬁ (0)} 8 ¥(Re):, (50)
8’7 #=0

RESULTS AND DISCUSSION

The free stream velocity induced by the first-order
boundary-layer solution and imposed on the second-
order boundary-layer flow is represented by U,(6, 0) =
Us(s, 0). As explained earlier, this quantity is obtained
by solving the second-order outer flow. The results for
U,(s,0) are plotted in Fig. 2, where the solid and
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It might be expected that the circular surface would
behave like a flat surface in the neighborhood of
8 = s = 0. This expectation is verified by the coinci-
dence of the solid and dashed lines when 6 and s are
small. Since U,(s,0) ~ s~ % for small values of s, it
follows that s*U,(s, 0} approaches a constant, It is also
worth noting that U,{0, 0) = 0, which is different from
the limit U; = —op as s = 0.

Representative profiles of the streamwise velocity
u, of the second-order boundary-layer solution are
plotted in Fig. 3 as a function of the stretched normal
coordinate N. The solid and dashed curves correspond
respectively to flow along a convex and a concave
surface. The results are for three streamwise stations,
0 = 49-5°, 85-5°, and 139-5°,

It is especially interesting to note in the figure that
u; is positive near the wall even though the free stream
velocity is negative. Furthermore, at any streamwise
location, the velocities and gradients in the near-wall

10 100
—— Circulor surface 8
——— P 1 jet o
_ sit ane wall je 8o \gu
= sH —60 w?
]
S ~ 5
a ~Uy(s,01= 1L =378 £}
S 4537 U (5,00=./2+1 e
Ny 3
’ 5
2 a3t ~20 o
48%* (5,0} ®
]
20 40 60 80 100 120 140 160 180

gors
FiG. 2. Free stream velocity induced by the first-order boundary-layer flow,

dashed lines correspond respectively to flow along a
circular surface and to flow along a flat plate (plane
wall jet). Also plotted for both surfaces is the quantity
45U, (s, 0), which is the boundary value of dy,/0n as
# — co. The plane wall jet results are from [6].

Inspection of the figure reveals that U,(s,0) is
negative, that is, the direction of the induced free stream
flow is opposite to that of the first-order boundary-layer
flow. This behavior can be made plausible by con-
sidering the way in which U,(s,0) is induced. The
first-order boundary-layer flow entrains otherwise
quiescent fluid from the environment, so that the
transverse velocity at the edge of the boundary layer
is negative. From the standpoint of the second-order
outer flow, this is equivalent to the presence of a sink
of mass distributed along the surface. Since the strength
of the sink decreases with s {or 8), the induced flow is
negative, i.e. U, (s, 0) is negative.

The just-discussed behavior is opposite to that
encountered in the classical Blasius flow along a flat
plate. In that case, the first-order boundary layer causes
a positive normal velocity, which is equivalent to
a distributed source of mass.

region are larger for the concave surface than for the
convex surface. With increasing downstream distance,
the positive velocities appear to diminish.

That u, > 0 near the wall is an indication that the
second-order boundary-layer flow in that region is
more influenced by the inertia of the first-order
boundary layer than by its own free stream velocity.
However, as the downstream distance increases, the
inertia contribution diminishes and, as a consequence,
the positive velocities grow smaller.

To explain the higher u, values exhibited by the
concave surface in the near-wall region, it is relevant to
examine the curvature-dependent terms on the RHS
of equation (13). These terms, taken together, represent
a net force on the flow. By the use of equations (8), (9),
and (32), it can be shown that

(51)

With this, the curvature-dependent terms on the right
of equation (13) collapse to a single term, xu; Nou,/0s.
In the near-wall region, this quantity is positive for a
concave surface and negative for a convex surface.
Therefore, for the former surface, the curvature terms

—{0p,/8s) = xuy vy —x(0uy /ON).
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F1G. 3. Representative velocity profiles for the second-order boundary-layer flow.

2:0

-2:0

-30

_4.0

Convex circular surface (k=1)

— ———Concave circular surface (k=-1)

F1G. 4. Representative temperature profiles for the second-order boundary-layer flow,
Pr=072.

tend to augment the velocities whereas the opposite
effect is in force for the latter.

Figure 4 contains representative profiles of the
second-order temperature t, which are plotted at the
same streamwise locations as were the velocity profiles
of Fig. 3. These results are for Pr = 0-72. As before,
the solid and dashed lines are for the convex and
concave surfaces, respectively. It may be noted that in
the near-wall region, the sign of ¢, and of its slope for
the concave surface are just opposite to the corre-
sponding sign for the convex surface. Also, for each

surface, the gradient 0t,/0N at N = 0 appears to be

independent of streamwise location.
To examine the near-wall behavior, it is fruitful to
consider the terms

Kuy NOt,/0s + (k/Pr)ot, /ON (52)

that play the role of heat sources or sinks on the
RHS of the ¢, energy equation (15). Near the wall, the
signs of the two terms are opposite to each other, but
the second term is predominant and is positive (ie. a
source) when the surface is convex and negative (i.c. a
sink) when the surface is concave. Furthermore, the
convection terms can be neglected near the wall. It then
follows from equation (15) that the conduction term

0%t,/ON? carries heat to the wall in the case of a
convex surface and away from the wall in the case of a
concave surface. Therefore, the opposite orientations of
the ¢, profiles are as they should be.

With respect to the A-independence of (6t,/ON)y =0,
it is useful to note that

(613/0N)y=0 ~ (1/6)(Ce2/0n)y=0 (53)

from which it follows that (Ge,/0n),-o ~6 when
(0ty/ON)y~o 1s independent of 6. Therefore, the
numerical solutions verify a conjecture based on the
a priori examination of (45).

The pressure distribution along the wall from the
second-order inner solution is presented in Fig. 5. Since
the first-order inner solution gives p; = 0, it follows
from equation (7) that p = pz/\/ Re. Actually, it is the
magnitude of (p,),=o that is plotted in the figure.
According to equation (33), (p,),-0 <0 for a convex
surface and >0 for a concave surface. The pressure
varies with 8% along the wall.

It is especially interesting to note that for the convex
surface, the pressure at the wall is less than that of the
free stream. The effect of this pressure defect is to press
the flow against the wall, thereby delaying separation.
This behavior is often referred to as the Coanda Effect.
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FIG. 6. Derivatives of stream function and temperature at the surface, respectively related
to friction factor and Nusselt number. The temperature derivative results are for
Pr =072

In the present analysis, the wall jet never separates
from the bounding surface.

The quantities (0%,/6n%),- o and {Je;/0n), 0. which
are respectively related to C,, and Nu;,, are plotted in
Fig. 6 as a function of the streamwise position co-
ordinate 6. Both of these quantities vary almost linearly
with . The former begins with a positive value at § = 0
and either increases or decreases according to whether
the wall is concave or convex. On the other hand, the
latter takes on a zero value at & = 0 and displays a
variation with 8 just opposite to the aforementioned.
The (e2/0n),=0o results are for Pr = 0-72.

Straight lines fitted through the results can be
represented as

0%/ )y=0 = 724307520
with error < 2-0 per cent,

(54)
(9ez/in),=0 = 0-6260
with error < 3-7 per cent,
for the convex circular surface, and
(0%2/0n%)y=0 = 7243407200
with error < 2-1 per cent,
(55)

(Oez/0n)y=q = — 06736
with error < 3-4 per cent,

for the concave circular surface.

The corresponding formulas for the friction factors
and the Nusselt numbers then become

C;, = (0-905-0-09406)0 " /Re,
C,= 0-%(36 +/ Re)+(0-905—0-09406)0~ ¥/Re, (56)
Cp/Cy, = 1+(32:593-386)0 %/, /Re,
Nu, = 0-156,
Nu = 0-071560%,/(Re)+ 0156,
Nu/Nuy = 1+2:196%//Re,
for the convex circular surface, and
Cp, = (0:905+0:09000)0~ /Re,
Cr= 9‘%/(36\/Re)+((}905+ 0-09008)6 " t/Re, (58)
Cr/Cy, = 1+(32:59+ 3-248)87 %/, /Re,
Nﬁlg = '—0168,
Nu = 0-071560~ % /(Re) 0168,
Nu/Nuy = 1-2356%//Re,

(57

(59)

for the concave circular surface. It is seen from the
foregoing equations that the second-order term has a
much greater effect on the friction factor than on the
Nusselt number.

Consideration may now be given to the deter-
mination of the reference velocity i, and the effective
origin of the wall jet. The need to determine the
latter arises because the conditions at 6 =0 which



Heat transfer in curved wall jets

emerge from the analytical solutions are rarely en-
countered at the point of origination of an actual
wall jet.

It is interesting to recount the approach employed
in prior wall jet analyses to fix the reference velocity
(no attempt was made to determine the effective origin).
In recognition of the fact that the total momentum is
not conserved in a wall jet owing to friction at the
bounding wall, Glauert [1] defined another quantity
which he called the flux of exterior momentum. This
quantity is an invariant for the plane wall jet and,
therefore, it was used by Glauert to eliminate the
reference velocity. On the other hand, it is not an
invariant for curved wall jets in the Reynolds number
range where the flow is expected to be laminar. For
instance, for a Reynolds number of 1000, the deviation
from constancy is about 100 per cent for a parabolic
wall jet according to Clark and Watson [6]. At high
Reynolds numbers, the deviation is much smaller (e.g.
10 per cent for the Clark-Watson case at Re = 10%),
but the flow is not expected to be laminar.

In the present problem, it is possible to deduce both
the effective origin of the wall jet and the unknown
reference velocity which determines the Reynolds
number by comparing analysis and experiment. In-
asmuch as Nu, has been found to be a universal
constant (independent of Re and 0) at a fixed Prandtl
number, equation (49) can be rewritten as

{411(0)/Re/(Nu— Nuy)}t = 9. (60)

With Nu, from analysis and data for Nu vs 6 from
experiment, (Nu— N uy)~% can be plotted as a function
of 8. The extrapolation of the resulting straight line
provides an intersection with the 8 axis. The value of 8
at the intersection point is the effective origin of the
wall jet. Furthermore, from the slope of the line and
the known value of t;(0), the Reynolds number (and,
hence, the reference velocity) is determined.

CONCLUDING REMARKS

The flow and heat transfer in a laminar wall jet on
concave and convex circular surfaces has been solved
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using Van Dyke’s technique of inner and outer ex-
pansions. The heat-transfer results were obtained for
Pr = 0-72. The local friction factor corresponding to
the first-order equations was found by Glauert and is
given by equation (21); the associated local Nusselt
number is readily calculated by solving the energy
equation and is expressed by equation (44). The effects
of curvature and displacement are represented by the
second-order equations. The second-order correction
increases the friction factor and is larger for the concave
surface than for the convex surface. On the other hand,
the second-order correction either increases or de-
creases the Nusselt number depending on whether the
surface is convex or concave; this correction is inde-
pendent of 8. Approximate representations for the local
friction factor and Nusselt number are expressed by
equations (56)—(59).

The Coanda Effect, whereby an induced pressure
deficit presses the flow against a curved surface, was
demonstrated by the analysis. A technique for deter-
mining the effective origin of the wall jet flow and the
reference velocity (and Reynolds number) was proposed.
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ECOULEMENT ET TRANSFERT THERMIQUE DANS DES JETS PARIETAUX
INCURVES SUR DES SURFACES CIRCULAIRES

Résumé—On considére des jets pariétaux incurvés (C'est a dire, Pécoulement le long d’une paroi courbée
dans la direction du mouvement) et, en particulier, des écoulements le long d’une surface circulaire
convexe ou concave. L’écoulement laminaire et les caractéristiques du transfert thermique sont étudiés
avec l'aide de la méthode des développements intérieurs et extérieurs. Les équations de Navier-Stokes
et de I'énergie sont développées en séries, 1/,/Re étant le paramétre du développement. Les équations
du premier ordre sont identiques aux équations du second ordre représentent des corrections diies aux
effets de courbure et de déplacement. Ces derniéres équations ont été résolues par une méthode de
différences finies, avec Pr = 0,72 dans ’équation d’énergie. La correction du second ordre augmente le
cisaillement a la paroi, Paugmentation étant plus grande pour I’écoulement sur une surface concave que
pour I'écoulement sur une surface convexe. P’autre part, la correction du second ordre accroit ou diminue
le nombre de Nusselt, suivant que la surface est convexe ou concave. L'effet Coanda, par lequel une
différence de pression transversale induite empéche la séparation de I'écoulement, a été expliqué par
I'analyse.
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STROMUNG UND WARMEUBERGANG IN GEKRUMMTEN WANDSTRAHLEN AN
KREISFORMIGEN OBERFLACHEN
Zusammenfassung —Es werden gekriimmte Wandstrahlen betrachtet (z.B. bei der Strémung entlang einer
Wand, die in Stromungsrichtung gekriimmt ist) und insbesondere die Strémung an konvexen und
konkaven kreisformigen Oberflichen. Die laminare Stromung und die Charakteristik des Wirmeiibergangs
wird nach der Methode der sogenannten inneren und duBeren Expansion untersucht: Die Navier-Stokes-
und die Energiegleichungen werden in Reihen entwickelt mit 1/\/Re) als dem Expansions-Parameter.
Die Gleichungen erster Ordnung sind mit den konventionellen Grenzschichtgleichungen identisch,
wihrend die Gleichungen zweiter Ordnung Korrekturen fiir die Kriimmung und Verdringungseffekte
liefern. Die letzteren Gleichungen wurden durch eine Differenzen-Differential-Methode gel6st mit
Pr = 0,72 fiir die Energie-Gleichung. Die angegebene Korrektur wirkt hin zur VergréfBerung der Wand-
schubspannung, wobei die VergréBerung fiir Strémungen iiber konkave Oberflichen griBer ist als tiber
konvexe. Andererseits wird die Nusselt-Zahl durch die Korrekturen entweder vergroert oder verkleinert,
wiederum abhédngig von der Oberflichenkriimmung. Der Coanda-Effekt, bei dem eine induzierte
Querdruck-Differenz zu einer Strémungsabldsung fiihrt, wurde in der Analysis demonstriert.

TEYEHHE U TEIUIOOBMEH B MCKPHMBJIEHHBIX NMPUCTEHOYHBIX
CTPYAX HA KPVIJIBIX NMOBEPXHOCTAX

AntoTanus — PaccMaTpUBaIOTCST MCKPHBIEHRbIC NPUCTEHHDBIE CTPYH (T. €. TEYEHHME BAONE CTEHKH,
HCKDHBNEHHONH MO HANPaBACHHIO TeYEHWH) M, B YaCTHOCTH, OOTEKAHME BLIIYKION HJIM BOTHYTON
KPYTIOH [OBEPXHOCTH. MeTOQOM BHYTPEHHMX H BHEIUHHX PA3/IOKEHHH aHANTH3MPYIOTCA Xapak-
TEPUCTHKH JTAMHHAPHOTO TEYEHH U TIpouecca TemoobMena. Ypasrenrne Hasbe-CTokca # ypaBHEHHE

SHEPrMM PA3TIATAlOTCS B PAIBI, rAe B KAYECTBE MapaMeTpa PasJoKEHHs B3sTa Bemuunua 1/V Re.
YpaBHeHusa nepsoro Nopsijaka HACHTUYHB! OObIMHBIM YDaBHEHUSIM [OTPAHHUHOTO CJON, B TO BPeMA
Kak ypaBHeHHs BTOPOTO [OPsOKa ABJAIOTCS nonpaBkamMH Ha 30@exTsl KPUBH3HBI H CMELICHHUA.
Tlocnennue ypaBHEHMS DEIIAIOTCA DPa3HOCTHO-gHgQepeHUHanbHbIM MeToaoM. i ypaBHEHHH
3HepTHy 3HaueHue yicna [Ipanarna pasno 0,72, Tlonpaska BTOPOro NOpANKa YBENHYHBAET 3HAYEHNUE
HaMpsKEHNUs Ha CTEHKe, NPHYEM O1s1 BOTHYTOH NMOBEPXHOCTH YBeJIMYEHHE 3HAYHTEbHEE, YeM IS
Bbinyk10iH. C Opyroil CTOPOHLI, NONpaBKa BTOPOrO NOPANKA WJIH YBEIHYMBAET, WIM YMEHBILAET
3Havenue uncaa Hyccenbra B 3aBHCHMOCTH OT TOTO, SIBIISICTCH JIM TOBEPXHOCTH BLITYKNON MU
Boruyroi. C nomolbio JaHHOTO aHanu3a JeMoHcTpupyercs dddekt Koanaa, Kkorna HHAynupoBaH-
HasA HONepeYHas pa3HOCTh AaB/ieHH BbI3bIBAET TOPMOXEHHE CPhIBA NIOTOKA.



