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Ahstraet-Consideration is given to curved wall jets (i.e. flow along a walI which is curved in the 
streamwise direction) and, in particular, to flow along either a convex or a concave circular surface. The 
laminar flow and heat-transfer characteristics are investigated by making use of the method of inner 
and outer expansions. The Navier-Stokes and energy equations are expanded in series, with l/,/Re as 
the expansion parameter. The first-order equations are identical to the conventional boundary-layer 
eqz&ions, whereas the second-order equations are CorrecGons for curvature and d~s~~~~rn~t efFecta. 
The fatter equationa were s&ed by a d~ffere~~~~eren~~a~ m&hod, with Pr = O-72 for the energy 
eqoation. The second-order correction increases the waif shear, the extent of the increase being greater 
for flow aver a cancave surface than for flow over a convex surface. On the other hand, the second-order 
correction either increases or decreases the Nusselt number, depending on whether the surface is convex 
or concave. The Coanda effect, whereby an induced transverse pressure difference inhibits flow separation, 

was demonstrated by the analysis. 

~~M~~~~A~~~ 

local friction factor; 
temperature variable, O*rz ; 
reduced stream function, equation (19); 
local heat-transfer coefficient; 
tfIennaf ~~~~~~~~~~~~ 
stretched dimensio&ess norrna~ coordinates 
n JRe; 
local Nusselt number hi;/k; 

curvilinear coordinates; 
dimensionless curvilinear coordinates, 
S/F., $F; 
~ens~o~~s pressure for outer expansiun ; 
Prandtl number; 
pressure; 
dimensionless pressure for inner expansion, 

fP-tS&&; 
Reynofds number, FG&; 
radius of circle; 
dimensionless polar coordinate; 
dimensionless temperature for outer 
expansion; 
temperature; 
d~rne~s~on~~s temperature for inner 
expamion, (i-&J&, -i,); 
dimensionless velocity components for outer 
expansion; 
velocity components; 
dimensionless velocity components for inner 
expansion, G/z&+ iF& ; 
referem veb&y. 

Greek symbols 

a, thermal diffusivity; 

rl, similarity variable, equation (17); 
@, angular position coordinate ; 

cxnvature ; 
dimensionless curvature, FKI; 
kinematic viscosity; 
density; 
wall shear stress ; 
~~rn~~~~~~~~ stream Freon for outer 
expansion; 
dimensionless stream function for inner 
expansion. 

Subscripts 

1, ~rst~~er fun~ons; 

2 second-order functions; 

mr ambient; 

W, wall. 

Superscript 

derivative with respect to q. 

A WALL jet is a fluid stream which is bounded on one 
side by a solid wall and on the other side by an other- 
wise quiescent Ruid environment with which it can 
freely mix. One of the s~tuatians where a wall jet is 
encounie~d is on a surface on Rhich a free jet has 
impinged. The wall jet is created by the impinging fluid 
which, after turning, flows along the surface. A wall jet 
may also be created by fluid directed tangentially along 
a surface by an injection slot. Amang heat-transfer 
applications, wali jets are encountered in the drying of 
text&3 arrd paper, tem~r~ngofg~~s~ coo@ of turbine 
bfades, etc. 

A two-dime&ma1 wall jet flow on a flat surfa~ 
may be termed a plane wall jet, whereas the designation 
curved wall jet may be employed to describe a two- 
djmensiona~ wall jet flowing along a bounding wall 
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which is curved in the streamwise direction. In addition 
to heat-transfer applications, the curved wall jet is also 
of interest in aeronautical applications such as 

boundary-layer control and circulation control of 

airfoils. The present paper is concerned with laminar 

flow and heat transfer in curved wall jets along convex 
and concave circular surfaces. 

The first analysis of a laminar wall jet flow was 

performed by Glauert [l], who treated the plane case 
using a conventional boundary-layer model (i.e. dis- 

placement effects due to the boundary layer were not 
included). A similarity solution was obtained in which 

a key parameter is the flux of external momentum. 
Although this quantity is an invariant for the Glauert 
problem, its numerical value cannot be determined 
from the similarity solution itself and, therefore, the 

solution is incomplete. This indeterminacy arises from 

the suppression of the boundary condition at the origin 
of the wall jet. A correction of Glauert’s solution to 

account for the boundary-layer displacement effect was 

obtained by Plotkin [2]. 
There has been some study of the fluid flow aspects 

of curved laminar wall jets, but not of the heat transfer. 
Wygnanski and Champagne [3] simplified the Navier- 

Stokes equations by assuming that the boundary-layer 
thickness is small compared with the radius of curva- 
ture of the surface and that the variation of the latter 

along the surface is of order unity. They found a 
similarity solution for the special case in which the 

radius of curvature is proportional to the 2 power of 
the arc length. The same similarity solution was in- 

dependently obtained by Lindow and Greber [4]. 
More recently, Plotkin [S] solved the curved wall jet 

problem for flow along a specific parabolic surface 

using a truncated series in which the first term is 
Glauert’s solution and the second term is a correction 
for curvature and for displacement effects. The solution 

contains an unknown characteristic velocity which was 
evaluated in terms of Glauert’s flux of external 
momentum. Unfortunately, the latter quantity is not an 
invariant throughout the flow field for Plotkin’s 

problem, so that its use in evaluating a constant 
reference velocity leads to an inconsistency. Clark and 
Watson [6] also used a truncated series to study the 
curved wall jet and applied their analytical method to 
flow along a parabolic surface. Their characteristic 
velocity was evaluated in the same way as was Plotkin’s 

with the same inconsistency caused by the variability 

of the flux of external momentum. 
The objective of the present study is to solve the BOW 

and energy equations in order to obtain skin friction 
and heat-transfer characteristics of laminar wall jets 
flowing along convex and concave circular surfaces. 
The analysis is performed using Van Dyke’s technique 
of inner and outer expansions [7]. The first-order 
solution is Glauert’s similarity solution, and the second- 
order solution provides a correction for surface curva- 
ture and boundary-layer displacement. The partial 
differential equations for the second-order functions are 
solved by a difference-differential method. The heat- 
transfer solutions are for a Prandtl number of 0.72 

(gases). To complete the solution, it is necessary to fix 
both the characteristic velocity and the effective origin 
of the wall jet.* A method is described whereby both 

quantities are determined with the aid of experimental 
information. 

GOVERNING EQUATIONS 

A schematrc diagram showing coordinates and 

nomenclature for wall jet flow along a convex circular 

surface is presented in Fig. 1. The curvilinear co- 

FIG. 1. Flow configuration and 
coordinate system. 

ordinates (S, ii) have their origin at 0; 5 is the arc 
length along the surface (i.e. S = 70) and A is the local 

outward normal. Consideration is given here to the 
symmetry case where the flow field is identical at all 
pairs of streamwise stations s and -s. The flow 
direction is indicated in the diagram. For the case of 

flow on the concave (i.e. inner) surface of the circle, the 
directions of ii and V are reversed relative to those of 

Fig. 1. 
For constant property laminar flows, the equations 

of mass, momentum, and energy conservation may be 
written in terms of curvilinear coordinates as [8] 
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*The need to fix the effective origin is common to all of 
the analyses cited in the foregoing, but the issue appears not 
to have been addressed therein. 



In the foregoirng the overbar identifies a dimensionaf 
quantity. The curvature IT is the reciprocal of the radius 
of the circle in the present problem. 

To construct dimensionless quantities, the radius of 
the circte r is used as a Length soa&> rmd an as-yet 
t.ms+ecM ~f~re~~ vetocity GF is used as the vefoeity 
scale. Then, the dependem variables are 

iii%, t%,, (~-Cv)l(t, -CA (j+- js,)/P$ 
and (5) 

s = Z/F = 8, PI = E/F> tc - 3?;, Re = E&#% 

where JC takes oa vafues of 2 I respectively for the. 
convex and concave surfaces. 

It is well known that the dimensionless thickness of 
the boundary layer is of order 1&i&. Accordingly, a 
new ~~udar~-~ayer normal coordinate which is of 
order u&y may be defined as ?d = n\/Re, The trans- 
verse velocity within the ~~~d~ layer is atso small 
and should be magnified in a similar manner. Once 
these scalings have been made, the conventional 
boundary-layer equations are obtained by letting Re 
become infinite with N %xed. However, when Re is only 
rn~era~e~y farge, as in the case in a faminar wah jet 
and, in ~~~~~~~~~ if the surke ~~~~~~~ is s~~~~~~~ 

large so that the boundary-layer thickness becomes 
comparable to the radius of curvature, the con- 
ventional boundary-layer equations are inadequate to 
describe the flow. 

Van Dyke% method of inner and outer expansiotls 
f7-j is used here to derive governing e~at~o~s which 
are subsequently solved to obtain a better represen- 
tation of the flow and heat transfer. The basis of the 
method is to expand both the inner (boundary layer) 
Row and the outer (inviscid) flow in series, with 
Sunday condit3ons for the fax.kms in tl9.2 ~~~~~~ 
b&B$g ~~~~~~~~ kiy a ~~~~~~~ of the two faw. 

Although the Row outside the boundary layer is 
inviscid, it is affected by the presence of the boundary 
layer. The first-order correction of the outer Aaw 

owing to this effect is of order If,/Re< Consequently, 
the outer expansions (i-e. for the in&&d Bow) are 
~~~~~~~b~~ in ~~~~~s~~~~e~ form as 

For the present problem, all ofthe functions inequation 
(6) with subscript one are zero, except Tr which is unity. 
The stream function \fr, obeys Laplace equation, and 
U, and V, are obtained from Y2 by d~~entiatiou. 
Pz and r, are found to be zero in the present problem.. 

The velocity mnponents, the pressure, and the tem- 
perature for the boundary-layer flow are also expanded 
in series 

It may be noted that the form of the expansion for 1) 
was chosen so that ~3~ N #I- zt2 h ttz. 

Suhst~tu~~o~ of eq~~~ons f7) into the d~~~4~~e~ 
~oun~e~~?s of (I)-(4) and ~~l~~t~on of terms with 
similar powers of Re leads to tbe governing equations 
for the successive inner approximations. The first-order 
equations are, with PI = n JKe, 

The second-order equations are given by 

The boundary conditions at the watl for the outer 
expan&ons and at the edge of the botrndary layer for 
the inner expansions are found by matchmg the inner 
and outer sotutions. 

Tb ~~~~~~~ ~~~~~~§ fb @It! 2Yks&mh irnner 

s&u&m are expres.txd by f&-o--(0$ The ~s~~~v~~ 

boundary conditions at the edge of the boundary layer+ 
which result from the inner-outer matching, are that 
a1 -+ U1(B, 0) and pt --* P,(@, 0). Since both U1 and Jay 
are zero, it foflows that t(% -+ 0 as N + co and that 
ps = 0 everywhere in ~~~ord~~ tith ~~a~jo~ (I@]” 
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Then, the complete statement of the boundary con- 
ditions for equations (8) and (9) is 

ur = or = 0 at N = 0; u1 -+ 0 as N --t x _ (16) 

Equations (8) and (9) with the boundary conditions 
(16) were solved by Glauert El] using a similarity 
transformation. By the introduction of a similarity 
variable 

y = #?-+iv (17) 

the momentum equation reduces to 

~~~~~~+~(~~~~ = 0 

fr (0) = f;(O) = 0, and f[(s) -+ 0 as n -+ co (18) 

where f, is defined by 

$1 (A W = 8% fs)* (19) 

The solution to equation (18) is obtained in closed 
form as 

From this, the friction factor associated with the first- 
order flow is 

CD = ~rW/(&@) = e-*A”(W(~ JR& 

where f;‘(O) = $. 

(21) 

As already noted, & = 0 and Ur, is governed by 
Lapliace’s equation, The boundary condition for Yz at 
the wall follows from the inner-outer matching as [7] 

Thus, as far as Yz is concerned, the first-order 
boundary-layer solution provides, via equation (22), a 
source of mass distributed along the surface. Since 
consideration is being given here to a symmetric flow, 

ye, 0) = sgr@)[$ j,*. (23) 

the boundary condition (22) is appropriately rewritten 

If consideration is first given to the concave case, the 
task is to solve 

as 

a2u: 18~~ i iwz 
-tFar‘tFaez=O for r<l, (24) 
iv 

Y2 = sgn(fJ)/Ol* at r = 1. (25) 

The solution is given by Poisson’s integral formula 

or, transforming from r to n with r = (X - n), 

Yz(& n) 
l-(I-nn)’ x c wWl# I* 

z.z 

2n -I r-c(t-ilf”-2(1-nfcasfa-#f‘ 
(27) 

The velocity U, at the wall, which is needed as a 
boundary condition for the forthcoming second-order 
inner solution, is calculated from 

Yz has a singular point at n = 0 and # = 8, so that 
equation (27) has to be modified to facilitate the 
numerical evaluation of equation (28). ff the stream 
function on the surface were constant and equaI to 
unity, the solution would then be Y, = 1, that is, 
equation (27) would become 

l-(f-n)2 

f= 2n 

s I 1 
X 

-= lc(l-n)‘-2(1-n)cos(#-#) 
d$. f29) 

Multiplying both sides of equation (29) by ?P&?, 0) = 
sgn(6)1~1* and subtracting it from equation (27), one 
obtains 

Then, U,(CI, 0) is given by 

1 
=--- 

5 

x sgn(#)idl*-sgn(8)j8iidQI. (3$) 
2n -= 1 -cos(&-#) 

For flow along a convex surface, Ur, can be solved 
for by an inversion which transforms the outside of the 

Since C$ = B is a singular point, the interval of in- 

circle into the inside. From these operations, it is found 

tegration should be divided into three regions, i.e. 

that V&3, ct) is expressed by exactly the same equation 
as (3 I). 

-n to@-&), (0-s) to ((I?+&), and (e+s) to n, and the 
numerical integration should be performed separately 
in each region. It is easy to show that the second 
integral approaches zero as E tends to zero. 

Second-order inner solution 
Since pr = 0, all the terms in equations (13) and (14) 

which contain p1 vanish. The pressure pz is found from 
equation (14) with the boundary condition pz + Pa = 0 
asN_txi. 

s 

m 
pg,=-it u:dN = 

N 
-+~~(l:+fil;). (32) 

In particular, the pressure at the wall is 

To initiate the solution of the momentum equation 
(fJ), a stream function $/2 is introduced to satisfy 
equation (12). 
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where the last term in the u2 equation of (35) results 
from the change of variable from N to q. Substitution 
of equations (32) and (35) into (13) yields 

= -4&r&“, (36) 

which is subject to the boundary conditions 

$2 = a+2/aq =o at q =0, 

a+2/atj + 4e*U,(e, 0) 
(37) 

as q -+ co. 

The last boundary condition in (37) results from the 
matching condition u2 -+ U2 (0, 0) as N + 00. 

At 8 = 0, equations (36) and (37) reduce to 

%+lim4e+U,(e,o)= -(J~+~)~sv-+co. 
all 8-o 

Inasmuch as there are no 8 derivatives in the differential 
equation for *2, it can be treated as an ordinary 
differential equation. The needed input information for 
fi and its derivatives is available in implicit form [see 
equation (20)], but this is inconvenient for an accurate 
solution of equation (38). Instead, equations (18) and 
(38) were solved simultaneously by the Runge-Kutta 
method to an accuracy of eight significant figures. 

The solution of equation (36) for 0 > 0 was carried 
out by a difference-differential method. At the first 
step, the tI derivatives were approximated by a one- 
sided forward difference, whereas for subsequent steps 
a three-point difference was employed. The step size 
A8 was n/40. The quasi-ordinary differential equation 
which resulted at each step was solved by the Runge- 
Kutta method. The input values of fi and its derivatives 
needed for the solutions were.read from the computer 
memory where they had been placed subsequent to 
solution of equation (18). The step size Aq and maxi- 
mum r] were 0.05 and 25, respectively. Verification 
runs in which Aq and qmax were varied indicated five 
significant figure accuracies for the friction factor. 

The friction factor associated with the second-order 
flow is given by 

C,Z = %,/(;&) = ($)q=&“/(8Re). (39) 

The total friction factor is, therefore, 

c, = c,, + c,, 

= (40) 

or 

SOLUTIONS OF THE ENERGY EQUATIONS 

First-order inner solution 
The energy equation (11) for the first-order inner 

solution can be transformed into an ordinary differ- 
ential equation by the use of the similarity variable 1. 

t;’ + Prfi t’ = 0. (42) 

The matching of inner and outer solutions requires 
that tl -+ T,(B, 0) as q --t co, and since Tl = 1 it follows 
that tl + 1. The boundary conditions can then be stated 
as 

t,=O at q=O; t,-+l as q-+co. (43) 

The solution of equations (42)-(43) can be written in a 
closed-form expression involving a double integral 
which must be evaluated numerically. It was found that 
greater accuracy could be attained by adirect numerical 
solution of equation (42) using the Runge-Kutta 
method. Once the solution has been performed, the 
Nusselt number for the first-order solution can be 
evaluated from 

Nul = hl r/k = ($)fT*(Re)*t;(O). (44) 

The quantity t\(O) is a function of Prandtl number and 
is equal to 0.28623 for Pr = 0.72. 

Second-order inner solution 
The energy equation for the second-order inner 

solution is expressed by equation (15) which, after 
transformation into (0, q) coordinates, becomes 

Inasmuch as the outer solution yields T2 = 0, the 
boundary conditions for t2 are 

t,=O at q=O; t,+O as q+co. (46) 

Next, a change of variable e2 = Ott, was introduced 
with the expectation that the derivative e;(O) would 
have a “nicer” f3 dependence than the derivative t;(O). 
These quantities enter into the evaluation of the Nusselt 
number. From an examination of equation (45) in the 
neighborhood of the wall, it can be conjectured that 
e+t, - 8, so that e;(O) should be nearly linear in 8. After 
transformation, equation (45) becomes 

with boundary conditions for e2 that are identical to 
those for t2 [equation (46)]. 

Equation (47) was solved by the same difference- 
differential method that was employed to solve equation 
(36). The calculations were performed for a Prandtl 
number of 0.72. At 6’ = 0, it can be shown that e2 = 0. 
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The Nusselt number can then be evaluated as 

Nuz = hz F/k = (&O-‘(ae,/?~),,=,, (48) 

Then, by making use of equations (44) and (48), there 
folIows 

Nu = Nu, + Nuz 

or 

= (M-*(Re)*t; (0) + (#3-‘(det/d~),=0 (49) 

RESULTS AND DISCUSSION 

The free stream velocity induced by the first-order 
boundary-layer solution and imposed on the second- 
order boundary-layer flow is represented by U,(e, 0) = 
&(s, 0). As explained earlier, this quantity is obtained 
by solving the second-order outer flow. The results for 
U,(s, 0) are plotted in Fig. 2, where the solid and 

It might be expected that the circular surface would 
behave like a flat surface in the neighborhood of 

0 = s = 0. This expectation is verified by the coinci- 
dence of the solid and dashed lines when 0 and s are 
small. Since c’,(s, 0) c s- * for small values of s, it 
follows that s*U,{s, 0) approaches a constant. It is also 
worth noting that U,(O, 0) = 0, which is different from 
thelimitUz= -coass+O. 

Representative profiles of the streamwise velocity 
u2 of the second-order boundary-layer solution are 
plotted in Fig. 3 as a function of the stretched normal 
coordinate N. The solid and dashed curves correspond 
respectively to flow along a convex and a concave 
surface. The results are for three streamwise stations, 
0 = 49.5”, 8.5.5”, and 139.5”. 

It is especially interesting to note in the figure that 
u2 is positive near the wall even though the free stream 
velocity is negative. Furthermore, at any streamwise 
location, the veiocities and gradients in the near-wall 

IO 

--- 8 Plane wnii jet 

E; 
d 
Y-4 
? 6 
5 
E 
9; 4 
‘“N 
? 

2 

0 

FIG. 2. Free stream velocity induced by the first-order boundary-layer tlow. 

dashed lines correspond respectively to flow along a 
circular surface and to flow along a flat plate (plane 
wall jet). Also plotted for both surfaces is the quantity 
4s*U,(s, 0), which is the boundary value of a$&g as 
q -+ co. The plane wail jet results are from [6]. 

Inspection of the figure reveals that U&,0) is 
negative, that is, thedirection of the induced free stream 
flow is opposite to that ofthe first-order boundary-layer 
flow. This behavior can be made plausible by con- 
sidering the way in which Uz(s, 0) is induced. The 
first-order bounda~-layer flow entrains otherwise 
quiescent fluid from the environment, so that the 
transverse velocity at the edge of the boundary layer 
is negative. From the standpoint of the second-order 
outer flow, this is equivalent to the presence of a sink 
ofmassdistributed along the surface. Since the strength 
of the sink decreases with s (or @), the induced flow is 
negative, i.e. L$(s, 0) is negative. 

The just-discussed behavior is opposite to that 
encountered in the classical Blasius flow along a flat 
plate. In that case, the first-order boundary layer causes 
a positive normal velocity, which is equivalent to 
a distributed source of mass. 

region are larger for the concave surface than for the 
convex surface. With increasing downstream distance, 
the positive velocities appear to diminish. 

That u2 > 0 near the wall is an indication that the 
second-order boundary~iayer Row in that region is 
more influenced by the inertia of the first-order 
boundary layer than by its own free stream velocity. 
However, as the downstream distance increases, the 
inertia contribution diminishes and, as a consequence, 
the positive velocities grow smaller. 

To explain the higher u2 values exhibited by the 
concave surface in the near-wall region, it is relevant to 
examine the curvature-dependent terms on the RHS 
of equation (13). These terms, taken together, represent 
a net force on the flow. By the use of equations (8), (9), 
and (32), it can be shown that 

-(cip*/&) = lcut L’r -tc(f?u&LV). (51) 

With this, the curvature-dependent terms on the right 
of equation (13) collapse to a single term, KU~ N&r/&. 
In the near-wall region, this quantity is positive for a 
concave surface and negative for a convex surface. 
Therefore, for the former surface, the curvature terms 
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-2.0 

FIG. 3. Representative velocity profiles for the second-order boundary-layer flow. 

-Convex circular surface (K= I) 

----Concave circular surfoce(~=-I) 

FIG. 4. Representative temperature profiles for the second-order boundary-layer flow, 
Pr = 0.72. 

tend to augment the velocities whereas the opposite 

effect is in force for the latter. 
Figure 4 contains representative profiles of the 

second-order temperature t2 which are plotted at the 
same streamwise locations as were the velocity profiles 
of Fig. 3. These results are for Pr = 0.72. As before, 
the solid and dashed lines are for the convex and 
concave surfaces, respectively. It may be noted that in 
the near-wall region, the sign of t2 and of its slope for 
the concave surface are just opposite to the corre- 
sponding sign for the convex surface. Also, for each 
surface, the gradient at,ldN at N = 0 appears to be 
independent of streamwise location. 

To examine the near-wall behavior, it is fruitful to 
consider the terms 

KU~Natl/aS+(K/Pr)at,/aN (52) 

that play the role of heat sources or sinks on the 
RHS.of the t2 energy equation (15). Near the wall, the 
signs of the two terms are opposite to each other, but 
the second term is predominant and is positive (i.e. a 
source) when the surface is convex and negative (i.e. a 
sink) when the surface is concave. Furthermore, the 
convection terms can be neglected near the wall. It then 
follows from equation (15) that the conduction term 

a2tz/aNZ carries heat to the wall in the case of a 
convex surface and away from the wall in the case of a 
concave surface. Therefore, the opposite orientations of 
the tz profiles are as they should be. 

With respect to the e-independence of (at,/aN),,,, 
it is useful to note that 

(at,iaN),=, - (l/e)(ae,/arl),=o (53) 

from which it follows that (ae&),=,, N 0 when 

(ak/aNk o is independent of 0. Therefore, the 
numerical solutions verify a conjecture based on the 
a priori examination of (45). 

The pressure distribution along the wall from the 
second-order inner solution is presented in Fig. 5. Since 
the first-order inner solution gives p1 = 0, it follows 
from equation (7) that p = p2/JRe. Actually, it is the 
magnitude of (JQ),,=~ that is plotted in the figure. 
According to equation (33), (pJVzo < 0 for a convex 
surface and >O for a concave surface. The pressure 
varies with 0-* along the wall. 

It is especially interesting to note that for the convex 
surface, the pressure at the wall is less than that of the 
free stream. The effect of this pressure defect is to press 
the flow against the wall, thereby delaying separation. 
This behavior is often referred to as the Coanda Effect. 
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FIG. 5. Pressure distribution on the surface. 

I - Convex circular surface (r=l) I 
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FIG. 6. Derivatives of stream function and temperature at the surface, respectively related 
to friction factor and Nusselt number. The temperature derivative results are for 

Pr = 0.72. 

In the present analysis, the wall jet never separates The corresponding formulas for the friction factors 
from the bounding surface. and the Nusselt numbers then become 

The quantities (13~&~/i;~~),,=~ and (ae&q),=o, which 
are respectively related to C,, and Nu2, are plotted in 
Fig, 6 as a function of the streamwise position co- 
ordinate 0. Both of these quantities vary almost linearly 
with 8. The former begins with a positive value at 8 = 0 
and either increases or decreases according to whether 
the wall is concave or convex. On the other hand, the 
latter takes on a zero value at 0 = 0 and displays a 
variation with 8 just opposite to the aforementioned. 
The (ae&?q),,=,, results are for Pr = 0.72. 

Straight lines fitted through the results can be 
represented as 

(~z~~/~~z)~=~ = 7.243 - 0.7528 
with error < 2.0 per cent, 

(ae&?q),, e = 0.6268 
with error < 3.7 per cent, 

for the convex circular surface, and 

(~2$2/~~2),,=o = 7.243fO.7208 
with error i 2.1 per cent, 

(aeJdr(),=e = -0.6738 
with error < 3.4 per cent, 

(54) 

(55) 

C, = (0.~5-0.09~ff)O-~/Re, 

C, = 9-$/(36,/Re)+ (0~905-0~094O~)~-~/Re, (56) 
C,/C,, = 1+(32.59-3.388)0-*/JRe, 

Nu, = 0.156, 

Nu = 0,07156~-~~(Re~+O,l56, 

~~~I~~~ = 1+2.19@/jRe, 

for the convex circular surface, and 

(57) 

C,, = (0.905 + OGKlOf&3- f/Re, 

Cf = 8-*/(36,/Ref+(@905+ 0~09008)8-*/Re, (58) 
Cf,Cf, = 1+(3259+ 3*24~)~-~/~Re, 

NU* = -0.168, 
Nu = 0.071568-+,,/(Re)-0.168, 

Nu/Nu, = I-2.356’/,/Re, 
(59) 

for the concave circular surface. It is seen from the 
foregoing equations that the second-order term has a 
much greater effect on the friction factor than on the 
Nusselt number. 

Consideration may now be given to the deter- 
mination of the reference velocity ii, and the effective 
origin of the wall jet. The need to determine the 

for the concave circular surface. latter arises because the conditions at 8 = 0 which 
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emerge from the analytical solutions are rarely en- 

countered at the point of origination of an actual 

wall jet. 
It is interesting to recount the approach employed 

in prior wall jet analyses to fix the reference velocity 
(no attempt was made to determine the effective origin). 
In recognition of the fact that the total momentum is 
not conserved in a wall jet owing to friction at the 
bounding wall, Glauert [l] defined another quantity 
which he called the flux of exterior momentum. This 
quantity is an invariant for the plane wall jet and, 
therefore, it was used by Glauert to eliminate the 
reference velocity. On the other hand, it is not an 
invariant for curved wall jets in the Reynolds number 
range where the flow is expected to be laminar. For 
instance, for a Reynolds number of 1000, the deviation 
from constancy is about 100 per cent for a parabolic 
wall jet according to Clark and Watson [6]. At high 
Reynolds numbers, the deviation is much smaller (e.g. 
10 per cent for the Clark-Watson case at Re = 105), 
but the flow is not expected to be laminar. 

In the present problem, it is possible to deduce both 
the effective origin of the wall jet and the unknown 
reference velocity which determines the Reynolds 
number by comparing analysis and experiment. In- 
asmuch as Nur has been found to be a universal 
constant (independent of Re and 0) at a fixed Prandtl 
number, equation (49) can be rewritten as 

{it; (O)JRe/(Nu - NuJ)* = 0. (60) 

With Nuz from analysis and data for Nu vs 8 from 
experiment, (Nu - Nu$t can be plotted as a function 
of 0. The extrapolation of the resulting straight line 
provides an intersection with the 0 axis. The value of 0 
at the intersection point is the effective origin of the 
wall jet. Furthermore, from the slope of the line and 
the known value of t;(O), the Reynolds number (and, 
hence, the reference velocity) is determined. 

CONCLUDING REMARKS 

The flow and heat transfer in a laminar wall jet on 

concave and convex circular surfaces has been solved 

using Van Dyke’s technique of inner and outer ex- 
pansions. The heat-transfer results were obtained for 
Pr = 0.72. The local friction factor corresponding to 
the first-order equations was found by Glauert and is 
given by equation (21); the associated local Nusselt 
number is readily calculated by solving the energy 
equation and is expressed by equation (44). The effects 
of curvature and displacement are represented by the 
second-order equations. The second-order correction 
increases the friction factor and is larger for the concave 
surface than for the convex surface. On the other hand, 
the second-order correction either increases or de- 
creases the Nusselt number depending on whether the 
surface is convex or concave; this correction is inde- 
pendent of 0. Approximate representations for the local 
friction factor and Nusselt number are expressed by 
equations (56)-(59). 

The Coanda Effect, whereby an induced pressure 
deficit presses the flow against a curved surface, was 
demonstrated by the analysis. A technique for deter- 
mining the effective origin of the wall jet flow and the 
reference velocity (and Reynolds number) was proposed. 

1. 

2. 

3. 

4. 
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ECOULEMENT ET TRANSFERT THERMIQUE DANS DES JETS PARIETAUX 
INCURVES SUR DES SURFACES CIRCULAIRES 

Resume-On considke des jets pari&taux incurvb (c’est a dire, I’tcoulement le long dune paroi courbee 
dans la direction du mouvement) et, en particulier, des ecoulements le long dune surface circulaire 
convexe ou concave. L%coulement laminaire et les caracteristiques du transfert thermique sont ttudib 
avec I’aide de la m&thode des developpements inttieurs et extbieurs. Les equations de Navier-Stokes 
et de I’energie sont developpees en series, l/,/Re etant le paramttre du dtveloppement. Les equations 
du premier ordre sont identiques aux equations du second ordre reprbentent des corrections dties aux 
effets de courbure et de d&placement. Ces dernieres equations ont bte rbolues par une mtthode de 
differences times, avec Pr = 472 dans l’equation d’tnergie. La correction du second ordre augmente le 
cisaillement a la paroi, l’augmentation &ant plus grande pour l’tcoulement sur une surface concave que 
pour I’ecoulement sur une surface convexe. @Yautre part, la correction du second ordre accroit ou diminue 
le nombre de Nusselt, suivant que la surface est convexe ou concave. L’effet Coanda, par lequel une 
di%rence de pression transversale induite empbche la separation de l’tcoulement, a 6th explique par 

I’analyse. 
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STROMUNG UND WARME#BERGANG IN GEKRtiMMTEN WANDSTRAHLEN AN 
KREISFORMIGEN OBERFLiiCHEN 

Zusammenfassung-Es werden gekriimmte Wandstrahlen betrachtet (z.B. bei der Stromung entlang einer 
Wand, die in Stromungsrichtung gekriimmt ist) und insbesondere die Stromung an konvexen und 
konkaven kreisfiirmigen Oberflachen. Die laminare Stromung und die Charakteristik des Warmeiibergangs 
wird nach der Methode der sogenannten inneren und PuDeren Expansion untersucht: Die Navier-Stokes- 
und die EnergiegIeichungen werden in Reihen entwickelt mit I!,_/ Be) als dem Expansions-Parameter. 
Die Gleichungen erster Ordnung sind mit den konventionellen Grenzs~hichtgleichun~en identisch, 
wahrend die Gleichungen zweiter Ordnung Korrekturen fur die Kriimmung und Verdrangungseffekte 
liefern. Die letzteren Gleichungen wurden durch eine Differenzen-Differential-Methode gel&t mit 
Pr = 0,72 fur die Energie-Gleichung. Die angegebene Korrektur wirkt hin zur VergrBBerung der Wand- 
schubspannung, wobei die VergrGDerung fur Strdmungen iiber konkave Oberflachen gr6Ber ist als iiber 
konvexe. Andererseits wird die Nusselt-Zahl durch die Korrekturen entweder vergrdllert oder verkteinert, 
wiederum abhangig von der Oberfl~~henkr~mmung. Der Coanda-Effekt, bei dem eine induzierte 

Querdru~k-Differenz zu einer Str~mungsab~~sung fiihrt, wurde in der Analysis demonstriert. 

TEYEHME M TEI-IJIOOBMEH B MCKPMBJIEHHbIX HPMCTEHOYHbIX 
CTPYJIX HA KPYi-J’IbIX TIOBEPXHOCTIIX 

AtiHoTamm- PaCCMaTp~Ba~TC~ ~CKpjiBne~Hble IJpHCTeHHbIe CTpyH (T. e. TeWHkie B&#JIb CTeHKH, 

HCKpHBJleHHOii no HanpasneHuh3 TeYeHm) ff, B YBCTHOCTA, 06reKame BbInyKJIOii II.nH ~0r~y~0R 

KpyrJIOti ITOBepXHOCTH. MeTonoM BHyTpeHHUX H BHelLIHEfX pfi3JlOmeHEiii aHaJIH3HpyIOTCfi xapar- 

Tep~cr~K~naM~HapHOrOreYe~~fl~npoueccaTennOO6MeHa.Ypae~eu~eHaBbe-CroKcatrypae~e~ae 

meprm pa3naraIoTcs B pnclbr, me B Kavecme napaMeTpa pa3noxemin B3flTa BensYsHa l/&G 

YpaBHeHEla nepBOr0 nOp%lKa HileHTMYHbI 06bIYHbiMypaBHeHWlM IlOrpaHWIHOrO cJlOR,B TO BPeMR 

KaK ypaBHeHM5i BTOpOro IlOpRRKa %BJD?KtTCII ~OuPaBKaM~ Ha 3+jEKTbl KpHBH3HbI ri CMeUeHHR. 

nOC,qeLIH&ie ypaBHeH~~ peUI%OTCK pa3HOcTHO-~~~~peHUManbHbrM MeTOLIOM. &IS ypaB~eH~~ 

3Heprm43HaYeHueYHcna ~pa~nTnnpaeHo0,72.~onpaBKasToporonopnqKayseiIriY~saeT3Ha~eHrre 

HanpFDKeHM5l Ha CTeHKe, IIpiPleM LUllt BOrHyTOA IIOBepXHOCTH yBeJIH'JeHIle 3HaYHTeJibHee, SeM AJIR 

Bbl~yKflOii. c l,pyrOfi CTOPOHbI, nOnpaBKa BTOpOrO nopxnKa RJIA yBeJIHWBaeT, ll,IW yMeHbI,,aeT 

3HaYeHMe YMCJla HyccenbTa B SZiBRCWMOCTM OT TOrO, IIBJISIeTCII JIH nOBepXHOCTb BbInyKJlOti WIA 

BOrHyTOii, CnOMOUbto _&UlHOrO aHafIH3aAeMOHCTpHpyeTC5l3~~eKT~OZi.HJla,KOr&i HHfiyUnpOBaH- 

HBX nOnepe'lHa% pa3HOCTbnaBJIeH& Bb~3bl~~TTo~MO~eHneC~bIBanOTOK~. 


